Pharmacy Policy Bulletin

Title: Oral Chemotherapy Agents
Policy #: Rx.01.67

Application of pharmacy policy is determined by benefits and contracts. Benefits may vary based on product line, group, or contract. Some medications may be subject to pre-certification, age, quantity, or formulary restrictions (i.e., limits on non-preferred drugs). Individual member benefits must be verified.

This pharmacy policy document describes the status of pharmaceutical information and/or technology at the time the document was developed. Since that time, new information relating to drug efficacy, interactions, contraindications, dosage, administration routes, safety, or FDA approval may have changed. This Pharmacy Policy will be regularly updated as scientific and medical literature becomes available. This information may include new FDA-approved indications, withdrawals, or other FDA alerts. This type of information is relevant not only when considering whether this policy should be updated, but also when applying it to current requests for coverage.

Members are advised to use participating pharmacies in order to receive the highest level of benefits.

Intent:
The intent of this policy is to communicate the medical necessity criteria for imatinib mesylate (Gleevec), Sorafenib (Nexavar), lenalidomide (Revlimid), dasatinib (Sprycel), sunitinib malate (Sutent), erlotinib (Tarceva), Thalidomide (Thalomid), vorinostat (Zolinza), lapatinib (Tykerb), nilotinib (Tasigna), temozolomide (Temodar), everolimus (Afinitor), fludarabine phosphate (Ofortap), pazopanib (Votrient), vandetanib (Caprelsa), abiraterone (Zytiga), vemurafenib (Zelboraf), crizotinib (Xalkori), ruxolitinib (Jakafi), axitinib (Inlyta), vismodegib (Erivedge), enzalutamide (Xtandi), bosutinib (Bosulif), regorafenib (Stivarga), ponatinib (Iclusig), caboctanzinib (Cometriq, Cabometyx), pomalidomide (Pomalyst), dabrafenib (Tafinlar), trametinib (Mekinist), afatinib (Gilotrif), ibrutinib (Imbruvica), ceritinib (Zykadia), idelalisib (Zydelig), olaparib (Lynparza), panobinostat (Farydak), palbociclib (Ibrance), lenvatinib (Lenvima), trifluridine/tipiracil (Lonsurf), sonidegib (Odomzo), alectinib (Alecensa), cobimetinib (Cotellic), ixazomib (Ninlaro), venetoclax (Venclexta), osimertinib (Tagrisso), rucaparib (Rubraca), ribociclib (Kisqali), and niraparib (Zejula) as provided under the member’s prescription drug benefit.

Description:
IMATINIB MESYLATE (GLEEVEC®)
Imatinib mesylate (Gleevec®) is indicated for the treatment of all of the following:
- Acute lymphoblastic leukemia (ALL)
- Aggressive systemic mastocytosis (ASM)
- Dermatofibrosarcoma protuberans (DFSP)
- Hyperesinophilic syndrome (HES)
- and/or chronic eosinophilic leukemia (CEL)
- Kit-positive unresectable and/or metastatic malignant gastrointestinal stromal tumors (GIST)
- Myelodysplastic/myeloproliferative diseases (MDS/MPD)
- Philadelphia chromosome-positive chronic myeloid leukemia (Ph+CML) in blast crisis phase, accelerated phase, or chronic phase after failure of interferon-alpha therapy.

Imatinib mesylate (Gleevec®) is the first signal transduction inhibitor to be approved by the US Food and Drug Administration (FDA). These drugs are designed to prevent and stop the growth of cancer cells. Imatinib mesylate (Gleevec®) directly blocks BCR-ABL, the protein necessary for
leukemia cells to survive. Imatinib mesylate (Gleevec®) also targets the activity of certain enzymes called tyrosine kinases, which play an important role within certain cancer cells. The activity of one of these tyrosine kinases, known as a stem cell factor receptor (c-Kit), is thought to drive the growth and division of most gastrointestinal stromal tumors (GISTs).

SORAFENIB (NEXAVAR®)
Sorafenib (Nexavar®) is indicated for the treatment of advanced renal cell carcinoma differentiated thyroid cancer and advanced unresectable hepatocellular carcinoma.

Sorafenib (Nexavar®) is a multikinase inhibitor that decreases tumor cell proliferation. The mechanism of action of sorafenib (Nexavar®) is not well understood, but it is believed to inhibit tumor growth in murine renal cell carcinoma and several other human tumor xenograft models. Sorafenib (Nexavar®) has also been shown to interact with multiple intracellular (CRAF, BRAF, and mutant BRAF) and cell surface kinases (KIT, FMS-like tyrosine kinase-3 [FLT-3], vascular endothelial growth factor receptors [VEGFR-3], and platelet-derived growth factor receptors [PDGFRβ]), several of which are thought to be involved in angiogenesis.

LENALIDOMIDE (REVLIMID®)
Lenalidomide (Revlimid®) is indicated for the treatment of individuals who have transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes that are associated with a deletion 5q cytogenetic abnormality, with or without additional cytogenetic abnormalities. Lenalidomide (Revlimid®) in combination with dexamethasone is indicated for the treatment of multiple myeloma in individuals who have received at least one prior therapy.

Lenalidomide (Revlimid®) is a thalidomide analogue. The mechanism of action of lenalidomide (Revlimid®) is not well understood. It possesses immunomodulatory and antiangiogenic properties, inhibits the secretion of proinflammatory cytokines, and increases the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide (Revlimid®) inhibits cell proliferation with varying effectiveness in some, but not all, cell lines. Of the cell lines tested, lenalidomide (Revlimid®) was effective in inhibiting the growth of Namalwa cells (a line of human B-lymphocytes with a deletion of one chromosome 5) but was much less effective in the inhibition of KG-1 cells (human myeloblastic cell lines with a deletion of one chromosome 5) and other cell lines without a chromosome 5 deletion. Lenalidomide (Revlimid®) inhibited the expression of cyclooxygenase-2 (COX-2) but not cyclooxygenase-1 (COX-1) in vitro.

Hematologic toxicity: Lenalidomide can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with deletion 5q myelodysplastic syndromes had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for deletion 5q myelodysplastic syndromes should have their complete blood cell count (CBC) monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.

DASATINIB (SPRYCEL®)
Dasatinib (Sprycel®) is indicated for the treatment of adults with all phases of chronic myeloid leukemia who have demonstrated resistance or intolerance to prior therapy, including imatinib mesylate (Gleevec®). Dasatinib (Sprycel®) is also indicated for the treatment of adults with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL) who have demonstrated resistance or intolerance to prior therapy. Dasatinib (Sprycel®) is also indicated for the treatment of Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in chronic phase.
Dasatinib (Sprycel®) is a multi-tyrosine kinase inhibitor that limits the activity of BCR-ABL, SRC family, c-Kit, EPHA2, and PDGFRβ tyrosine kinases. This results in an inhibition of chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) cell lines that overexpress BCR-ABL. Dasatinib (Sprycel®) has also been shown to be effective for individuals who have demonstrated resistance or intolerance to imatinib mesylate (Gleevec®).

SUNITINIB MALATE (SUTENT®)
Sunitinib malate (Sutent®) is indicated for the treatment of the following conditions:

1. GIST after trial and failure of or intolerance to imatinib mesylate (Gleevec®)
2. Advanced renal cell carcinoma (RCC)
3. Progressive, well differentiated pancreatic neuroendocrine tumors in patients with unresectable locally advanced or metastatic disease

Sunitinib malate (Sutent®) is a multikinase inhibitor that targets several receptor tyrosine kinases (RTKs), some of which are implicated in tumor growth, pathologic angiogenesis, and/or a metastatic progression of cancer. The mechanism of action of sunitinib malate (Sutent®) is not well understood. It is believed that sunitinib malate (Sutent®) inhibits platelet-derived growth factor receptors (PDGFRα and PDGFRβ), vascular endothelial growth factor receptors (VEGFR1, VEGFR2, and VEGFR3), c-Kit, FLT3, colony-stimulating factor 1 receptor (CSF-1R), and the glial cell line-derived neurotrophic factor receptor (RET). Several of these kinases are thought to be involved in angiogenesis.

ERLOTINIB (TARCEVA®)
Erlotinib (Tarceva®) is indicated for the treatment of individuals who have locally advanced or metastatic NSCLC after failure of at least one prior chemotherapy regimen. Also indicated for pancreatic cancer as first line treatment.

Erlotinib (Tarceva®) is described as a human epidermal growth factor receptor type 1 (HER1)/EGFR tyrosine kinase inhibitor. Its mechanism of antitumor action is not fully understood. It inhibits the phosphorylation of tyrosine kinase associated with EGFR. The specificity of tyrosine kinase receptor inhibition has not been defined. EGFR is expressed on the cell surfaces of normal cells and cancer cells. Two multicenter, placebo-controlled, randomized Phase III trials were conducted in first-line individuals who had locally advanced or metastatic non-small cell lung cancer (NSCLC), and the results showed no clinical benefit with the concurrent administration of erlotinib (Tarceva®). Erlotinib (Tarceva®) with platinum-based chemotherapy (carboplatin and paclitaxel or gemcitabine and cisplatin) is not recommended for use in this setting.

Thalidomide (Thalomid®)
Thalidomide (Thalomid) is indicated:

1. In combination with dexamethasone, for the treatment of patients with newly diagnosed multiple myeloma (MM) diagnosed multiple myeloma (MM)
2. For the acute treatment of cutaneous manifestations of severe erythema nodosum leprosum (ENL); not indicated as monotherapy for such ENL treatment in the presence of moderate to severe neuritis
3. As maintenance therapy for prevention and suppression of the cutaneous manifestations of ENL relapsemanifestations of ENL relapse

The mechanism of action of thalidomide (Thalomid) is not fully understood. Thalidomide possesses immunomodulatory, anti-inflammatory and antiangiogenic properties. Available data from in vitro
studies and clinical trials suggest that the immunologic effects of this compound can vary substantially under different conditions, but may be related to suppression of excessive tumor necrosis factor-alpha (TNF-α) production and down-modulation of selected cell surface adhesion molecules involved in leukocyte migration. For example, administration of thalidomide has been reported to decrease circulating levels of TNF-α in patients with erythema nodosum leprosum (ENL); however, it has also been shown to increase plasma TNF-α levels in HIV-seropositive patients. Other anti-inflammatory and immunomodulatory properties of thalidomide may include suppression of macrophage involvement in prostaglandin synthesis, and modulation of interleukin-10 and interleukin-12 production by peripheral blood mononuclear cells. Thalidomide treatment of multiple myeloma patients is accompanied by an increase in the number of circulating natural killer cells, and an increase in plasma levels of interleukin-2 and interferon-gamma (T cell-derived cytokines associated with cytotoxic activity). Thalidomide was found to inhibit angiogenesis in a human umbilical artery explant model in vitro. The cellular processes of angiogenesis inhibited by thalidomide may include the proliferation of endothelial cells.

VORINOSTAT (ZOLINZA®)
Vorinostat (Zolinza®) is a histone deacetylase (HDAC) inhibitor indicated for the treatment of individuals with cutaneous T-cell lymphoma (CTCL) who have progressive, persistent, or recurrent disease on or following two systemic therapies.

Vorinostat (Zolinza®) inhibits the enzymatic activity of histone deacetylases (HDACs) Class I (i.e., HDAC1, HDAC2, and HDAC3) and Class II (ie, HDAC6) at nanomolar concentrations (inhibitory concentration [IC50] less than 86 nM). In some cancer cells, there is an overexpression of HDACs or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. Hypoacetylation of histones is associated with a condensed chromatin structure and repression of gene transcription. Inhibition of HDAC activity allows for the accumulation of acetyl groups on the histone lysine residues, resulting in an open chromatin structure and transcription activation. In vitro, vorinostat (Zolinza®) causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat (Zolinza®) is not fully understood.

LAPATINIB (TYKERB®)
Lapatinib (Tykerb®) is indicated for use in combination with capecitabine (Xeloda®) for the treatment of individuals with advanced or metastatic breast cancer whose tumors overexpress the HER2 protein and who have received prior therapy with an anthracycline, a taxane, and trastuzumab (Herceptin®). It is also indicated for use in combination with letrozole for the treatment of postmenopausal women with hormone receptor positive metastatic breast cancer that overexpresses the HER2 receptor for whom hormonal therapy is indicated.

Lapatinib (Tykerb®) is an inhibitor of the EGFR (Epidermal growth factor receptor; also called HER1 or ErbB1) and HER2 receptor tyrosine kinases, thereby inhibiting ErbB-driven tumor cell growth.

NILOTINIB (TASIGNA®)
Nilotinib (Tasigna®) is indicated for the following:
1. Treatment of newly diagnosed adult patients with Philadelphia chromosome positive chronic myeloid leukemia (Ph+ CML) in chronic phase
2. Treatment of chronic phase (CP) and accelerated phase (AP) Ph+ CML in adult patients resistant to or intolerant to prior therapy that included imatinib. Clinical benefit, such as improvement in disease-related symptoms or increased survival, has not been demonstrated:survival, has not been demonstrated.
Nilotinib (Tasigna®) is a selective tyrosine kinase inhibitor which binds to and stabilizes the inactive conformation of the kinase domain of the Abl protein. Bcr-Abl is the oncogenic tyrosine kinase expressed by Philadelphia chromosome-positive (Ph+) stem cells, directly involved in the pathogenesis of CML. Nilotinib inhibits the autophosphorylation of Bcr-Abl, PDGFR, and c-Kit, thereby reducing the tumor size.

TOPOTECAN CAPSULES (HYCAMTIN®)
Topotecan capsule (Hycamtin®) is indicated for the treatment of relapsed small cell lung cancer in patients with a prior complete or partial response and who are at least 45 days from the end of first-line chemotherapy.

Topotecan capsule (Hycamtin®) is a semi-synthetic derivative of camptothecin and is an anti-tumor drug. The anti-tumor activity of topotecan involves the inhibition of topoisomerase-I, an enzyme intimately involved in DNA replication as it relieves the torsional strain introduced ahead of the moving replication fork. Topotecan inhibits topoisomerase-I by stabilizing the covalent complex of enzyme and strand-cleaved DNA, which is an intermediate of the catalytic mechanism. The cellular sequel of inhibition of topoisomerase-I by topotecan is the induction of protein-associated DNA single-strand breaks. The cytotoxicity of topotecan is thought to be due to double strand DNA damage produced during DNA synthesis, when replication enzymes interact with the ternary complex formed by topotecan, topoisomerase I, and DNA. Mammalian cells cannot efficiently repair these double strand breaks.

TEMOZOLOMIDE (TEMODAR®)
Temozolomide (Temodar®) is indicated for the treatment of adult patients with refractory anaplastic astrocytoma (ie, patients who have experienced disease progression on a drug regimen containing a nitrosourea and procarbazine) and for the treatment of adults with newly diagnosed glioblastoma multiforme concomitantly with radiotherapy and then as maintenance treatment.

Temozolomide (Temodar®), an imidazotetrazine derivative, is not directly active but undergoes rapid nonenzymatic conversion at physiologic pH to the reactive compound 5-(3-methyltriazen-1-yl),imidazole-4-carboxamide (MTIC). The cytotoxicity of MTIC is thought to be caused primarily by alkylation of DNA. Alkylation (methylation) occurs mainly at the O6 and N7 positions of guanine.

EVEROLIMUS (AFINITOR®)
Everolimus (Afinitor®) is indicated for the treatment of advanced renal cell carcinoma (RCC), in patients who failed treatment with sunitinib (Sutent®) or sorafenib (Nexavar®). Everolimus (Afinitor®) is also indicated for the treatment of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis (TS). Afinitor is also indicated for the treatment of progressive neuroendocrine tumors of pancreatic origin (PNET) in patients with unresectable, locally advanced or metastatic disease.

Everolimus (Afinitor) is a kinase inhibitor, a derivative of the natural macrocyclic lactone sirolimus with immunosuppressant and anti-angiogenic properties. In cells, everolimus binds to the immunophilin FK Binding Protein-12 (FKBP-12) to generate an immunosuppressive complex that binds to and inhibits the activation of the mammalian Target of Rapamycin (mTOR), a key regulatory kinase. Inhibition of mTOR activation results in the inhibition of T lymphocyte activation and proliferation associated with antigen and cytokine (IL-2, IL-4, and IL-15) stimulation and the inhibition of antibody production.

Fludarabine Phosphate (Oforta™)
Fludarabine Phosphate (Oforta™) is indicated for a diagnosis of B-cell chronic lymphocytic leukemia (CLL) whose disease has not responded to or has progressed during or after treatment with at least one standard alkylating-agent containing regimen.

Fludarabine Phosphate (Oforta™) is a synthetic purine nucleotide antimetabolite agent. Upon administration, fludarabine phosphate is rapidly dephosphorylated in the plasma to 2F-ara-A, which then enters the cell. Intracellularly, 2F-ara-A is converted to the 5’-triphosphate, 2-fluoro-ara-ATP (2F-ara-ATP). 2F-ara-ATP competes with deoxyadenosine triphosphate for incorporation into DNA. Once incorporated into DNA, 2F-ara-ATP functions as a DNA chain terminator, inhibits DNA polymerase alpha, gamma, and delta, and inhibits ribonucleoside diphosphate reductase. 2F-ara-A also inhibits DNA primase and DNA ligase I. The mechanism of action of this antimetabolite is not completely characterized and may be multi-faceted.

Pazopanib (Votrient™)

Pazopanib (Votrient™) is indicated for the treatment of advanced renal cell carcinoma.

Pazopanib (Votrient™) is a multi-tyrosine kinase inhibitor of vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, platelet-derived growth factor receptor (PDGFR)-alpha and -beta, fibroblast growth factor receptor (FGFR)-1 and -3, cytokine receptor (Kit), interleukin-2 receptor inducible T-cell kinase (Itk), leukocyte-specific protein tyrosine kinase (Lck), and transmembrane glycoprotein receptor tyrosine kinase (c-Fms). In vitro, pazopanib inhibited ligand-induced autophosphorylation of VEGFR-2, Kit and PDGFR-beta receptors. In vivo, pazopanib inhibited VEGF-induced VEGFR-2 phosphorylation in mouse lungs, angiogenesis in a mouse model, and the growth of some human tumor xenografts in mice.

Vandetanib (Caprelsa)

Vandetanib (Caprelsa) is indicated for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease.

Vandetanib (Caprelsa) is a kinase inhibitor. Studies have shown that vandetanib inhibits the activity of tyrosine kinases including members of the epidermal growth factor receptor (EGFR) family. Vandetanib inhibits endothelial cell migration, proliferation, survival and new blood vessel formation in in vitro models of angiogenesis. Vandetanib inhibits EGFR-dependent cell survival in vitro. In addition, vandetanib inhibits epidermal growth factor (EGF)-stimulated receptor tyrosine kinase phosphorylation in tumor cells and endothelial cells and VEGF-stimulated tyrosine kinase phosphorylation in endothelial cells.

Abiraterone (Zytiga)

Abiraterone (Zytiga) in combination with prednisone is indicated for the treatment of patients with metastatic castration-resistant prostate cancer who have received prior chemotherapy containing docetaxel.

Abiraterone acetate (Zytiga) is converted in vivo to abiraterone, an androgen biosynthesis inhibitor, that inhibits 17 α-hydroxylase/C17,20-lyase (CYP17). This enzyme is expressed in testicular, adrenal, and prostatic tumor tissues and is required for androgen biosynthesis. Androgen sensitive prostatic carcinoma responds to treatment that decreases androgen levels. Zytiga decreased serum testosterone and other androgens in patients in the placebo-controlled phase 3 clinical trial.
VEMURAFENIB (ZELBORAF)

Vemurafenib (Zelboraf) is indicated for the treatment of patients with unresectable or metastatic melanoma with BRAFV600E mutation as detected by an FDA-approved test.

Vemurafenib (Zelboraf) is a low molecular weight, orally available, inhibitor of some mutated forms of BRAF serine-threonine kinase, including BRAFV600E. Vemurafenib also inhibits other kinases in vitro such as CRAF, ARAF, wild-type BRAF, SRMS, ACK1, MAP4K5 and FGR at similar concentrations. Some mutations in the BRAF gene including V600E result in constitutively activated BRAF proteins, which can cause cell proliferation in the absence of growth factors that would normally be required for proliferation. Vemurafenib has anti-tumor effects in cellular and animal models of melanomas with mutated BRAFV600E

CRIZOTINIB (XALKORI)

Crizotinib (Xalkori) is an inhibitor of receptor tyrosine kinases including ALK, Hepatocyte Growth Factor Receptor (HGFR, c-Met), and Recepteur d'Origine Nantais (RON). Translocations can affect the ALK gene resulting in the expression of oncogenic fusion proteins. The formation of ALK fusion proteins results in activation and dysregulation of the gene's expression and signaling which can contribute to increased cell proliferation and survival in tumors expressing these proteins. Crizotinib demonstrated concentration-dependent inhibition of ALK and c-Met phosphorylation in cell-based assays using tumor cell lines and demonstrated antitumor activity in mice bearing tumor xenografts that expressed EML4- or NPM-ALK fusion proteins or c-Met.

RUXOLITINIB (JAKAFI)

Ruxolitinib (Jakafi) is indicated for treatment of patients with intermediate or high-risk myelofibrosis, including primary myelofibrosis, post-polycythemia vera myelofibrosis and post-essential thrombocythemia myelofibrosis.

Ruxolitinib (Jakafi), a kinase inhibitor, inhibits Janus Associated Kinases (JAKs) JAK1 and JAK2 which mediate the signaling of a number of cytokines and growth factors that are important for hematopoiesis and immune function. JAK signaling involves recruitment of STATs (signal transducers and activators of transcription) to cytokine receptors, activation and subsequent localization of STATs to the nucleus leading to modulation of gene expression.

Axitinib (Inlyta®)

Axitinib (Inlyta) is indicated for the treatment of advanced renal cell carcinoma (RCC) after failure of one prior systemic therapy.

Axitinib (Inlyta) has been shown to inhibit receptor tyrosine kinases including vascular endothelial growth factor receptors (VEGFR)-1, VEGFR-2, and VEGFR-3 at therapeutic plasma concentrations. These receptors are implicated in pathologic angiogenesis, tumor growth, and cancer progression. VEGF-mediated endothelial cell proliferation and survival were inhibited by axitinib in vitro and in mouse models. Axitinib was shown to inhibit tumor growth and phosphorylation of VEGFR-2 in tumor xenograft mouse models.
Vismodegib (Erivedge®)

Vismodegib (Erivedge) is indicated for the treatment of adults with metastatic basal cell carcinoma, or with locally advanced basal cell carcinoma that has recurred following surgery or who are not candidates for surgery, and who are not candidates for radiation.

Vismodegib (Erivedge) is an inhibitor of the Hedgehog pathway. Vismodegib binds to and inhibits smoothened, a transmembrane protein involved in Hedgehog signal transduction.

Enzalutamide (Xtandi)

Enzalutamide (Xtandi) is indicated for the treatment of patients with metastatic castration-resistant prostate cancer who have previously received docetaxel.

Enzalutamide (Xtandi) is an androgen receptor inhibitor that acts on different steps in the androgen receptor signaling pathway. Enzalutamide has been shown to competitively inhibit androgen binding to androgen receptors and inhibit androgen receptor nuclear translocation and interaction with DNA. A major metabolite, N-desmethyl enzalutamide, exhibited similar in vitro activity to enzalutamide. Enzalutamide decreased proliferation and induced cell death of prostate cancer cells in vitro, and decreased tumor volume in a mouse prostate cancer xenograft model.

Bosutinib (Bosulif)

Bosutinib (Bosulif) is indicated for the treatment of adult patients with chronic, accelerated, or blast phase Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance or intolerance to prior therapy.

Bosutinib (Bosulif) is a tyrosine kinase inhibitor. Bosutinib inhibits the Bcr-Abl kinase that promotes CML; it is also an inhibitor of Src-family kinases including Src, Lyn, and Hck. Bosutinib inhibited 16 of 18 imatinib-resistant forms of Bcr-Abl expressed in murine myeloid cell lines. Bosutinib did not inhibit the T315I and V299L mutant cells. In mice, treatment with bosutinib reduced the size of CML tumors relative to controls and inhibited growth of murine myeloid tumors expressing several imatinib-resistant forms of Bcr-Abl.

Regorafenib (Stivarga)

Regorafenib (Stivarga) is indicated for the treatment of patients with metastatic colorectal cancer (mCRC) who have been previously treated with fluoropyrimidine-, oxaliplatin- and irinotecan-based chemotherapy, an anti-VEGF therapy, and, if KRAS wild type, an anti-EGFR therapy.

Regorafenib (Stivarga) is a small molecule inhibitor of multiple membrane-bound and intracellular kinases involved in normal cellular functions and in pathologic processes such as oncogenesis, tumor angiogenesis, and maintenance of the tumor microenvironment.

Ponatinib (Iclusig)

Ponatinib (Iclusig) is indicated for the treatment of acute lymphoblastic leukemia and chronic myeloid leukemia.

Ponatinib (Iclusig) inhibits the in vitro tyrosine kinase activity of Abelson murine leukemia (ABL) and T315I mutant ABL with half maximal inhibitory concentrations (IC50) of 0.4 and 2 nM, respectively.
Ponatinib also inhibits the in vitro activity of additional kinases with IC50 concentrations between 0.1 and 20 nM, including members of the VEGFR, PDGFR, FGFR, EPH receptors and SRC families of kinases, and KIT, RET, TIE2, and FLT3. Ponatinib inhibits the in vitro viability of cells expressing native or mutant breakpoint cluster region–ABL, including T315I.

Cabozantinib malate (Cometriq, Cabometyx)

Cabozantinib malate (Cometriq) is indicated for the treatment of medullary thyroid cancer.

Cabozantinib malate (Cabometyx) is indicated for the treatment of patients with advanced renal cell carcinoma (RCC) who have received prior anti-angiogenic therapy.

Cabozantinib malate (Cometriq, Cabometyx) inhibits the tyrosine kinase activity of RET; MET; VEGFR-1, -2, and -3; KIT; TRKB; FLT-3; AXL; and TIE-2. These receptor tyrosine kinases are involved in both normal cellular function and pathologic processes such as oncogenesis, metastasis, tumor angiogenesis, and maintenance of the tumor microenvironment.

Pomalidomide (Pomalyst)

Pomalidomide (Pomalyst) is indicated for patients with multiple myeloma who have received at least two prior therapies including lenalidomide and bortezomib and have demonstrated disease progression on or within 60 days of completion of the last therapy.

Pomalidomise (Pomalyst), an analogue of thalidomide, is an immunomodulatory agent with antineoplastic activity. In in vitro cellular assays, pomalidomide inhibited proliferation and induced apoptosis of hematopoietic tumor cells. Additionally, pomalidomide inhibited the proliferation of lenalidomide-resistant multiple myeloma cell lines and synergized with dexamethasone in both lenalidomide-sensitive and lenalidomide-resistant cell lines to induce tumor cell apoptosis.

Dabrafenib (Tafinlar)

Dabrafenib (Tafinlar) For the treatment of unresectable or metastatic melanoma in patients with a BRAF V600E mutation.

Dabrafenib (Tafinlar), a kinase inhibitor, inhibits some mutated forms of BRAF kinases with in vitro concentration that inhibits 50% (IC50) values of 0.65, 0.5, and 1.84 nM for BRAF V600E, BRAF V600K, and BRAF V600D enzymes, respectively. Dabrafenib also inhibits wild-type BRAF and CRAF kinases with IC50 values of 3.2 and 5 nM, respectively, and other kinases such as SIK1, NEK11, and LIMK1 at higher concentrations. Some mutations in the BRAF gene, including those that result in BRAF V600E, can result in constitutively activated BRAF kinases that may stimulate tumor cell growth. Dabrafenib inhibits BRAF V600E mutation–positive melanoma cell growth in vitro and in vivo.

Trametinib (Mekinist)

Trametinib (Mekinist) is indicated for the treatment of unresectable or metastatic melanoma in patients with a BRAFV600E or BRAFV600K mutation as detected by a Food and Drug Administration (FDA)–approved test. **Trametinib (Mekinist)** is not indicated in patients who have received prior BRAF-inhibitor therapy.

Trametinib (Mekinist), a kinase inhibitor, is a reversible inhibitor of mitogen-activated extracellular signal-regulated kinase 1 (MEK1) and MEK2 activation and of MEK1 and MEK2 kinase activity. MEK proteins are upstream regulators of the extracellular signal-related kinase (ERK) pathway, which
promotes cellular proliferation. BRAF
V600E mutations result in constitutive activation of the BRAF pathway, which includes MEK1 and MEK2. Trametinib inhibits BRAF
V600 mutation-positive melanoma cell growth in vitro and in vivo.

Afatinib (Gilotrif)

Afatinib (Gilotrif) is indicated as a first-line treatment of metastatic non–small cell lung cancer in patients whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 (L858R) substitution mutations as detected by a Food and Drug Administration–approved test.

Afatinib (Gilotrif) a tyrosine kinase inhibitor, covalently binds to the kinase domains of EGFR (ErbB1), HER2 (ErbB2), and HER4 (ErbB4), and irreversibly inhibits tyrosine kinase autophosphorylation, resulting in downregulation of ErbB signaling.

Ibrutinib (Imbruvica)

Ibrutinib (Imbruvica) is indicated for the treatment of chronic lymphocytic leukemia (CLL) who have received at least 1 prior therapy. And the treatment of mantle cell lymphoma (MCL) in patients who have received at least 1 prior therapy.

Ibrutinib (Imbruvica) is a potent and irreversible inhibitor of Bruton tyrosine kinase (BTK), an integral component of the B-cell receptor (BCR) and cytokine receptor pathways. Constitutive activation of B-cell receptor signaling is important for survival of malignant B-cells; BTK inhibition results in decreased malignant B-cell proliferation and survival.

Ceritinib (Zykadia)

Ceritinib (Zykadia) is indicated for the treatment of patients with anaplastic lymphoma kinase (ALK)–positive metastatic nonsmall cell lung cancer (NSCLC) who has progressed on or are intolerant to crizotinib

Ceritinib (Zykadia) is a potent inhibitor of anaplastic lymphoma kinase (ALK), a tyrosine kinase involved in the pathogenesis of nonsmall cell lung cancer. ALK gene abnormalities due to mutations or translocations may result in expression of oncogenic fusion proteins (e.g., ALK fusion protein) which alter signaling and expression and result in increased cellular proliferation and survival in tumors which express these fusion proteins. ALK inhibition reduces proliferation of cells expressing the genetic alteration. Ceritinib also inhibits insulinlike growth factor 1 receptor (IGF-1R), insulin receptor (InsR), and ROS1. Ceritinib has demonstrated activity in crizotinib-resistant tumors in NSCLC xenograft models.

Idelalisib (Zydelig®)

Idelalisib (Zydelig) is indicated:

1. in combination with rituximab for the treatment of patients with relapsed chronic lymphocytic leukemia (CLL) for whom rituximab alone would be considered appropriate due to other co-morbidities
2. for the treatment of patients with relapsed follicular B-cell non-Hodgkin lymphoma (FL) who have received at least two prior systemic therapies

3. for the treatment of patients with relapsed small lymphocytic lymphoma (SLL) who have received at least two prior systemic therapies

Idelalisib (Zydelig) is an inhibitor of PI3Kδ kinase, which is expressed in normal and malignant B-cells. Idelalisib induced apoptosis and inhibited proliferation in cell lines derived from malignant B-cells and in primary tumor cells. Idelalisib inhibits several cell signaling pathways, including B-cell receptor (BCR) signaling and the CXCR4 and CXCR5 signaling, which are involved in trafficking and homing of B-cells to the lymph nodes and bone marrow. Treatment of lymphoma cells with idelalisib resulted in inhibition of chemotaxis and adhesion, and reduced cell viability. It indicated for chronic lymphocytic leukemia, follicular B-cell non-hodgkin lymphoma, and small lymphocytic lymphoma.

Olaparib (Lynparza™) is indicated as monotherapy in patients with deleterious or suspected deleterious germline BRCA mutated (as detected by an FDA-approved test) advanced ovarian cancer who have been treated with three of more prior lines of chemotherapy.

Olaparib (Lynparza) is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1, PARP2 and PARP3. PARP enzymes are involved in normal cellular homeostasis, such as DNA transcription, cell cycle regulation, and DNA repair.

Panobinostat (Farydak®)

Panobinostat (Farydak) is approved, in combination with bortezomib and dexamethasone, for the treatment of patients with multiple myeloma who have received at least 2 prior regimens, including bortezomib and an immunomodulatory agent.

Panobinostat (Farydak) is a histone deacetylase inhibitor (HDAC). Inhibition of HDAC activity results in increased acetylation of histone proteins, leading to transcriptional activation. In vitro, panobinostat caused the accumulation of acetylated histones and other proteins, inducing cell cycle arrest and/or apoptosis of some transformed cells.

Palbociclib (Ibrance®)

Palbociclib (Ibrance) is indicated in combination with letrozole for the treatment of postmenopausal women with estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer as an initial endocrine based therapy for their metastatic disease.

Palbociclib (Ibrance) inhibits cyclin-dependent kinase (CDK) 4 and 6. In vitro, palbociclib reduced cellular proliferation of ER-positive breast cancer cell lines by blocking progression of the cell from G1 into S phase of the cell cycle.

Lenvatinib (Lenvima™)

Lenvatinib (Lenvima) is indicated for the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer and advanced renal cell carcinoma.
Lenvatinib (Lenvima) is a receptor tyrosine kinase inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). Lenvatinib also inhibits other RTKs that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1, 2, 3, and 4; the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET.

Trifluridine/Tipiracil (Lonsurf®)

Trifluridine/tipiracil (Lonsurf) is indicated for the treatment of patients with mCRC who have been previously treated with fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy, an anti-vascular endothelial growth factor (VEGF) biological therapy, and if RAS wild-type, an anti-epidermal growth factor receptor (EGFR) therapy.

Trifluridine/tipiracil (Lonsurf) is a new orally administered antineoplastic combination of trifluridine, a thymidine-based nucleoside analog, and tipiracil, a thymidine phosphorylase inhibitor.

Sonidegib (Odomzo®)

Sonidegib (Odomzo®) is the second drug in the class of Hh pathway inhibitors, was approved for the treatment of adult patients with locally advanced basal cell carcinoma (laBCC) that has recurred following surgery or radiation therapy, or those who are not candidates for surgery or radiation therapy.

Alectinib (Alecensa®)

Alectinib (Alecensa®) is a kinase inhibitor indicated for the treatment of patients with ALK-positive, metastatic NSCLC who have progressed on or are intolerant to crizotinib. This indication is approved under accelerated approval based on tumor response rate and duration of response.

Cobimetinib (Cotellic™)

Cobimetinib (Cotellic™) is a MEK inhibitor approved to be used in combination with vemurafenib (Zelboraf) for the treatment of patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation.

Ixazomib (Ninlaro®)

Ixazomib (Ninlaro®) is the first oral proteasome inhibitor approved by the FDA. Ixazomib is indicated in combination with lenalidomide and dexamethasone for the treatment of patients with multiple myeloma who have received at least 1 prior line of therapy.

Osimertinib (Tagrisso™)

Osimertinib (Tagrisso™) is an irreversible third-generation TKI, indicated for the treatment of patients with metastatic EGFR T790M mutation-positive NSCLC who have experienced disease progression while on prior TKI therapy.

Ventoclax (Venclexta™)
Ventoclax (Venclexta™) is a BCL-2 inhibitor indicated for the treatment of patients with chronic lymphocytic leukemia (CLL) with 17p deletion, as detected by an FDA approved test, who have received at least one prior therapy.

Rucabarib (Rubraca™) is a PARP inhibitor indicated as monotherapy for the treatment of patients with deleterious BRCA mutation (germline and/or somatic) associated advanced ovarian cancer who have been treated with two or more chemotherapies.

Ribociclib (Kisqali®) is a kinase inhibitor indicated in combination with an aromatase inhibitor as initial endocrine-based therapy for the treatment of postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer.

Niraparib (Zejula™) is a PARP inhibitor indicated for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to platinum-based chemotherapy.

Policy:
Oral chemotherapy is approved when ONE of the following inclusion criteria is met:
A. Drug is FDA approved for indication and regimen requested, including confirmation by genetic and/or biomarker testing when appropriate; or
B. The indication and regimen are classified as Category 1 or 2A by National Comprehensive Cancer Network (NCCN) Drugs and Biologics Compendium™; or
C. The narrative text in American Hospital Formulary Service--Drug Information (AHFS-DI®) is supportive of the use; or
D. The indication is classified as Class I or Class IIa in Micromedex®

Black Box Warning:

Revlimid

Fetal risk: Do not use lenalidomide during pregnancy. Lenalidomide, a thalidomide analogue, caused limb abnormalities in a developmental monkey study. Thalidomide is a known human teratogen that causes severe, life-threatening human birth defects. If lenalidomide is used during pregnancy, it may cause birth defects or death to a developing fetus. In women of childbearing potential, obtain 2 negative pregnancy tests before starting lenalidomide treatment. Women of childbearing potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after lenalidomide treatment. To avoid fetal exposure to lenalidomide, it is only available under a restricted distribution program called RevAssist.

Information about the RevAssist program is available at http://www.revlimid.com or by calling the manufacturer’s toll-free number 1-888-423-5436.

Hematologic toxicity: Lenalidomide can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with deletion 5q myelodysplastic syndromes had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for deletion 5q myelodysplastic syndromes should have their complete blood cell count (CBC) monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.

Venous and arterial thromboembolism: Lenalidomide has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with multiple myeloma who were treated with lenalidomide and dexamethasone therapy. Monitor for and advise patients about the signs and symptoms of thromboembolism. Advise patients to seek immediate medical care if they develop symptoms such as...
shortness of breath, chest pain, or arm or leg swelling. Thromboprophylaxis is recommended and the choice of regimen should be based on an assessment of the patient's underlying risk factors.

Sutent
Hepatotoxicity has been observed in clinical trials and postmarketing experience. The hepatotoxicity may be severe, and deaths have been reported. Causality of the deaths is uncertain.

Tykerb
Hepatotoxicity has been observed in clinical trials and postmarketing experience. The hepatotoxicity may be severe, and deaths have been reported. Causality of the deaths is uncertain.

Tasigna
QT prolongation and sudden deaths: Nilotinib prolongs the QT interval. Sudden deaths have been reported in patients receiving nilotinib. Do not use nilotinib in patients with hypokalemia, hypomagnesemia, or long QT syndrome. Hypokalemia or hypomagnesemia must be corrected prior to nilotinib administration and should be monitored periodically. Avoid drugs known to prolong the QT interval and strong CYP3A4 inhibitors. Patients should avoid food 2 hours before and 1 hour after taking a nilotinib dose. A dose reduction is recommended in patients with hepatic impairment. Obtain electrocardiograms (ECGs) to monitor the QTc at baseline, 7 days after initiation, and periodically thereafter, as well as following any dose adjustments.

Thalomid
EMBRYO-FETAL TOXICITY
If thalidomide is taken during pregnancy, it can cause severe birth defects or embryo-fetal death. Thalidomide should never be used by females who are pregnant or who could be pregnant while taking the drug. Even a single dose [1 capsule (regardless of strength)] taken by a pregnant woman during her pregnancy can cause severe birth defects.

Pregnancy must be excluded before start of treatment. Prevent pregnancy thereafter by the use of two reliable methods of contraception.

THALOMID® (thalidomide) is only available through a restricted distribution program, the THALOMID REMSTM program (formerly known as the System for Thalomid Education and Prescribing Safety (S.T.E.P.S®) program).

VENOUS THROMBOEMBOLISM
Significant increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE) in patients with multiple myeloma receiving THALOMID® (thalidomide) with dexamethasone.

Hycamtin
Bone marrow suppression: Administer topotecan only to patients with baseline neutrophil counts of 1,500 cells/mm3 or more and a platelet count of 100,000 cells/mm3 or more. In order to assess the occurrence of bone marrow suppression, monitor blood cell counts.

Oferta
Some patients who received high doses of this medicine to treat acute leukemia developed severe nervous system side effects, including blindness, coma, and death. Similar nervous system side effects, including coma, seizures, agitation, and confusion, have occurred in patients at doses recommended for the treatment of chronic lymphocytic leukemia. Discuss any questions or concerns with your doctor. Contact your doctor right away if any of these effects occur.

This medicine may severely decrease bone marrow function. This can lower your body's ability to fight infection and reduce the ability of your blood to clot properly. Some patients have developed severe and sometimes fatal blood problems (e.g., hemolytic anemia, autoimmune thrombocytopenia, hemophilia) while using this medicine. Your doctor will need to monitor you closely for these conditions. Tell your doctor right away if you develop signs or symptoms of an infection (e.g., swollen glands, sore throat, fever, chills), bleeding problems (e.g., easy bruising; black, tarry stools; bleeding
from the gums), or hemolytic anemia (e.g., yellowing of eyes or skin, dark urine, severe tiredness or weakness). Be sure to keep all doctor and laboratory appointments.

Fatal lung problems have been reported in patients receiving this medicine along with pentostatin. This medicine is not recommended for use with pentostatin.

Votrient

Hepatotoxicity: Severe and sometimes fatal hepatotoxicity has been observed in clinical trials. Monitor hepatic function prior to and during treatment. Interrupt and then reduce or discontinue regorafenib for hepatotoxicity as manifested by elevated liver function tests (LFTs) or hepatocellular necrosis, depending upon severity and persistence.

Caprelsa

QT prolongation, torsades de pointes, and sudden death: Vandetanib can prolong the QT interval. Torsades de pointes and sudden death have been reported in patients receiving vandetanib. Do not use vandetanib in patients with hypocalcemia, hypokalemia, hypomagnesemia, or long QT syndrome. Hypocalcemia, hypokalemia, and/or hypomagnesemia must be corrected prior to vandetanib administration and should be periodically monitored. Avoid drugs known to prolong the QT interval. If a drug known to prolong the QT interval must be administered, more frequent electrocardiogram (ECG) monitoring is recommended. Given the half-life of 19 days, obtain ECGs to monitor the QT interval at baseline, at 2 to 4 and 8 to 12 weeks after starting treatment with vandetanib, and every 3 months thereafter. Following any dose reduction for QT prolongation or any dose interruptions more than 2 weeks, conduct QT assessment as previously described. Because of the 19-day half-life, adverse reactions, including a prolonged QT interval, may not resolve quickly. Monitor appropriately. Only health care providers and pharmacies certified with the restricted distribution program are able to prescribe and dispense vandetanib.

Erivedge

ERIVEDGE can result in embryo-fetal death or severe birth defects. Verify pregnancy status prior to initiation of ERIVEDGE. Advise male and female patients of these risks. Advise females of the need for contraception and advise males of the potential risk of ERIVEDGE exposure through semen.

Stivarga

Hepatotoxicity: Severe and sometimes fatal hepatotoxicity has been observed in clinical trials. Monitor hepatic function prior to and during treatment. Interrupt and then reduce or discontinue regorafenib for hepatotoxicity as manifested by elevated liver function tests (LFTs) or hepatocellular necrosis, depending upon severity and persistence.

Iclusig

Arterial thrombosis: Cardiovascular, cerebrovascular, and peripheral vascular thrombosis, including fatal myocardial infarction (MI) and stroke, have occurred in ponatinib-treated patients. In clinical trials, serious arterial thrombosis occurred in 8% of ponatinib-treated patients. Interrupt and consider discontinuation of ponatinib in patients who develop arterial thrombotic events.

Hepatotoxicity: Hepatotoxicity, liver failure, and death have occurred in ponatinib-treated patients. Monitor hepatic function prior to and during treatment. Interrupt and then reduce or discontinue ponatinib for hepatotoxicity.

Cometriq

Perforations and fistulas: GI perforations occurred in 3% and fistula formation in 1% of cabozantinib-treated patients. Discontinue cabozantinib for perforation or for fistula formation. Hemorrhage: Severe and sometimes fatal hemorrhage, including hemoptysis and GI hemorrhage, occurred in 3% of cabozantinib-treated patients. Monitor patients for signs and symptoms of bleeding. Do not administer cabozantinib to patients with severe hemorrhage.
Pomalyst

Embryo-fetal toxicity: Pomalidomide, a thalidomide analogue, is contraindicated in pregnancy. Thalidomide is a known human teratogen that causes severe birth defects or embryo-fetal death. In women of reproductive potential, obtain 2 negative pregnancy tests before starting pomalidomide. Women of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sexual intercourse during and for 4 weeks after stopping treatment. Pomalidomide is only available through a restricted distribution program called Pomalyst Risk Evaluation and Mitigation Strategy (REMS).

Venous thromboembolism: Deep venous thrombosis (DVT) and pulmonary embolism (PE) occur in patients with multiple myeloma treated with pomalidomide. Prophylactic antithrombotic measures were employed in the clinical trial. Consider prophylactic measures after assessing an individual patient’s underlying risk factors.

Zydelig

Fatal and/or serious hepatotoxicity occurred in 14% of Zydelig-treated patients. Monitor hepatic function prior to and during treatment. Interrupt and then reduce or discontinue Zydelig.

Fatal and/or serious and severe diarrhea or colitis occurred in 14% of Zydelig-treated patients. Monitor for the development of severe diarrhea or colitis. Interrupt and then reduce or discontinue Zydelig.

Fatal and serious pneumonitis can occur in Zydelig-treated patients. Monitor for pulmonary symptoms and bilateral interstitial infiltrates. Interrupt or discontinue Zydelig.

Fatal and serious intestinal perforation can occur in Zydelig-treated patients across clinical trials. Discontinue Zydelig if intestinal perforation is suspected.

Farydak

Severe diarrhea occurred in 25% of FARYDAK treated patients. Monitor for symptoms, institute anti-diarrheal treatment, interrupt FARYDAK and then reduce dose or discontinue FARYDAK.

Severe and fatal cardiac ischemic events, severe arrhythmias, and ECG changes have occurred in patients receiving FARYDAK. Arrhythmias may be exacerbated by electrolyte abnormalities. Obtain ECG and electrolytes at baseline and periodically during treatment as clinically indicated.

Odomzo

EMBRYO-FETAL TOXICITY

Odomzo can cause embryo-fetal death or severe birth defects when administered to a pregnant woman and is embryotoxic, fetotoxic, and teratogenic in animals. Verify the pregnancy status of females of reproductive potential prior to initiating therapy. Advise females of reproductive potential to use effective contraception during treatment with ODOMZO and for at least 20 months after the last dose. Advise males of the potential risk of exposure through semen and to use condoms with a pregnant partner or a female partner of reproductive potential during treatment with ODOMZO and for at least 8 months after the last dose.

Guidelines:

Refer to the specific manufacturer’s prescribing information for administration and dosage details and any applicable Black Box warnings.

BENEFIT APPLICATION

Subject to the terms and conditions of the applicable benefit contract, the applicable drug(s) identified in this policy is (are) covered under the prescription drug benefits of the Company’s products when the medical necessity criteria listed in this pharmacy policy are met. Any services that are experimental/investigational or cosmetic are benefit contract exclusions for all products of the Company.
References:

Applicable Drugs:

Inclusion of a drug in this table does not imply coverage. Eligibility, benefits, limitations, exclusions, precertification/referral requirements, provider contracts, and Company policies apply.

<table>
<thead>
<tr>
<th>Brand Name</th>
<th>Generic Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleevec</td>
<td>imatinib mesylate</td>
</tr>
<tr>
<td>Nexavar</td>
<td>sorafenib</td>
</tr>
<tr>
<td>Revlimid</td>
<td>lenalidomide</td>
</tr>
<tr>
<td>Sprycel</td>
<td>dasatinib</td>
</tr>
<tr>
<td>Sutent</td>
<td>sunitinib malate</td>
</tr>
<tr>
<td>Tarceva</td>
<td>erlotinib</td>
</tr>
<tr>
<td>Thalomid</td>
<td>thalidomide</td>
</tr>
<tr>
<td>Zolinza</td>
<td>vorinostat</td>
</tr>
<tr>
<td>Tykerb</td>
<td>lapatinib</td>
</tr>
<tr>
<td>Tasigna</td>
<td>nilotinib</td>
</tr>
<tr>
<td>Hycamtin</td>
<td>topotecan</td>
</tr>
<tr>
<td>Temodar</td>
<td>temozolomide</td>
</tr>
<tr>
<td>Afinitor</td>
<td>everolimus</td>
</tr>
<tr>
<td>Oforta</td>
<td>fludarabine Phosphate</td>
</tr>
<tr>
<td>Votrient</td>
<td>pazopanib</td>
</tr>
<tr>
<td>Caprelsa</td>
<td>vandetanib</td>
</tr>
<tr>
<td>Zytiga</td>
<td>abiraterone</td>
</tr>
<tr>
<td>Zelboraf</td>
<td>vemurafenib</td>
</tr>
<tr>
<td>Xalkori</td>
<td>crizotinib</td>
</tr>
<tr>
<td>Jakafi</td>
<td>ruxolitinib</td>
</tr>
<tr>
<td>Inlyta</td>
<td>axitinib</td>
</tr>
<tr>
<td>Erivedge</td>
<td>vismodegib</td>
</tr>
<tr>
<td>Xtandi</td>
<td>enzalutamide</td>
</tr>
<tr>
<td>Bosulif</td>
<td>bosutinib</td>
</tr>
<tr>
<td>Drug Name</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Stivarga</td>
<td>regorafenib</td>
</tr>
<tr>
<td>Iclusig</td>
<td>ponatinib</td>
</tr>
<tr>
<td>Cometriq,</td>
<td>cabozaatinib</td>
</tr>
<tr>
<td>Cabometyx</td>
<td></td>
</tr>
<tr>
<td>Pomalyt</td>
<td>pomalidomide</td>
</tr>
<tr>
<td>Tafinlar</td>
<td>dabrafenib</td>
</tr>
<tr>
<td>Mekinist</td>
<td>trametinib</td>
</tr>
<tr>
<td>Gilotrif</td>
<td>afatinib</td>
</tr>
<tr>
<td>Imbruvica</td>
<td>brutinib</td>
</tr>
<tr>
<td>Zykadia</td>
<td>ceritinib</td>
</tr>
<tr>
<td>Zydelig</td>
<td>delalisib</td>
</tr>
<tr>
<td>Lynparza</td>
<td>olaparib</td>
</tr>
<tr>
<td>Farydak</td>
<td>panobinostat</td>
</tr>
<tr>
<td>Ibrance</td>
<td>palbociclib</td>
</tr>
<tr>
<td>Lenvima</td>
<td>lenvatinib</td>
</tr>
<tr>
<td>Lonsurf</td>
<td>trifluridine/tipiracil</td>
</tr>
<tr>
<td>Odomzo</td>
<td>sonidegib</td>
</tr>
<tr>
<td>Alecensa</td>
<td>alectinib</td>
</tr>
<tr>
<td>Cotellic</td>
<td>cobimetinib</td>
</tr>
<tr>
<td>Ninlaro</td>
<td>ixazomib</td>
</tr>
<tr>
<td>Tagrisso</td>
<td>osimertinib</td>
</tr>
<tr>
<td>Venclexta</td>
<td>venetoclax</td>
</tr>
<tr>
<td>Rubraca</td>
<td>rucaparib</td>
</tr>
<tr>
<td>Kisqali</td>
<td>ribociclib</td>
</tr>
<tr>
<td>Zejula</td>
<td>niraparib</td>
</tr>
</tbody>
</table>

Cross References:

NA

Policy Version Number: 18.00
P&T Approval Date: July 13, 2017
Policy Effective Date: September 01, 2017
Next Required Review Date: July 12, 2018

The Policy Bulletins on this web site were developed to assist Independence Blue Cross ("Independence") in administering the provisions of the respective benefit programs, and do not constitute a contract. If you have coverage through the Independence organization, please refer to your specific benefit program for the terms, conditions, limitations, and exclusions of your coverage. Independence does not provide health care services, medical advice or treatment, or guarantee the outcome or results of any medical services/treatments. The facility and professional providers are responsible for providing medical advice and treatment. Facility and professional providers are independent contractors and are not employees or agents of Independence. If you have a specific medical condition, please consult with your doctor. Independence reserves the right at any time to change or update its Policy Bulletins. ©2017 Independence Blue Cross. All Rights Reserved.
Independence Blue Cross is an independent licensee of the Blue Cross and Blue Shield Association.